#### ATSC Data Broadcasting A View of T3S13 Activities and Standards

Rich Chernock IBM Research

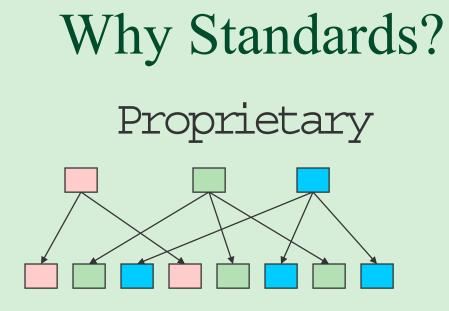
Regis Crinon Intel

#### Credits

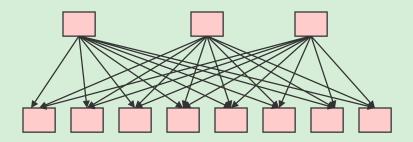
#### Participants in ATSC T3S13

Participants in ATSC IS-DIWG

S13 Ballot
Second Ballot
First ballot passed


46 T3 members eligible to vote
Q1: 16 Yes, 3 No, 2 Abstain
Q2: 17 Yes, 0 No, 4 Abstain

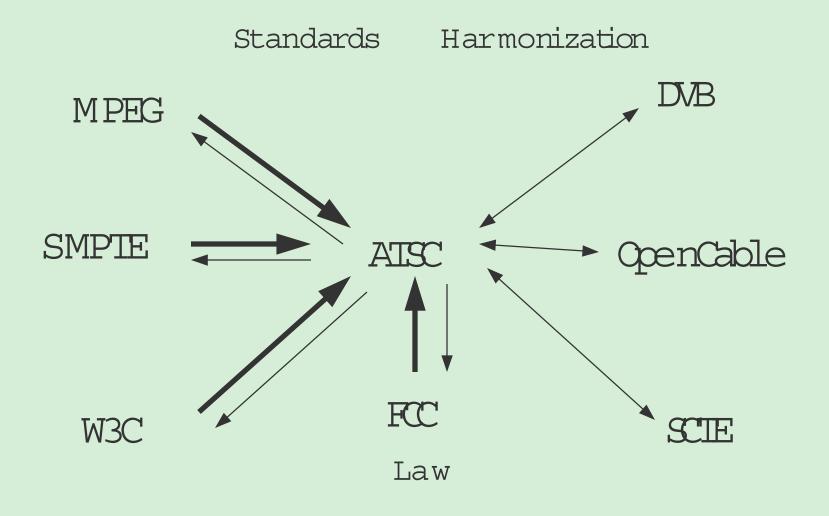
9 Companies provided comments


# Agenda

- Standards & ATSC
  MPEG
  Data Broadcast & T3S13
  - Encapsulations
  - Discovery & Binding
  - Buffer models
- Implementation
- Conclusion

"The most wonderful thing about standards is that there are so many to choose from" - unknown




#### Standards Based





| "Standards"          |       |      |        |
|----------------------|-------|------|--------|
| DVB                  | AISC  | D    | SM-CC  |
| MPEG-(1,2,4,         | 7)    | ARIB |        |
| TV Anytime / Any whe |       | ere  | W3C    |
| DAVIC                | ATVEF | L    | Java   |
| DIG                  | MHEG  | Qær  | nCable |
| SMPIE                |       | SCIE | • • •  |

#### **ATSC** Interactions



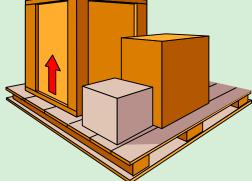
## GENERAL PICTURE

\* Television Programs \* A/V \* PSIP/System Info \*Associated data such as - Enhancements

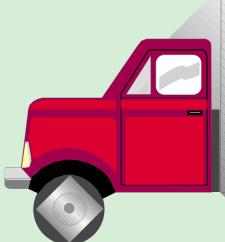
- e-Commerce

**Stand-alone Data Services** 

- \* Subscription Services- Magazines, Music
  - Targeted info services
- \* Streaming Data


Opportunistic data services \* Business data services \* IP router in the sky \*Targeted info services

# **Broadcast Multiplex**


MPEG Transport Stream

#### Data Broadcast





# MPEG-2 Systems



#### What is MPEG-2

An ISO standard - 13818

consisting of the following parts:

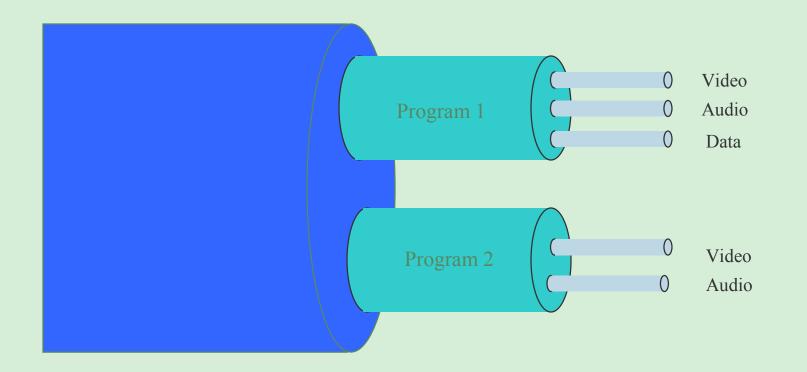
Part 1 - Systems

Part 2 - Video

Part 3 - Audio

Part 4 - Compliance testing

Part 5 - Simulation software

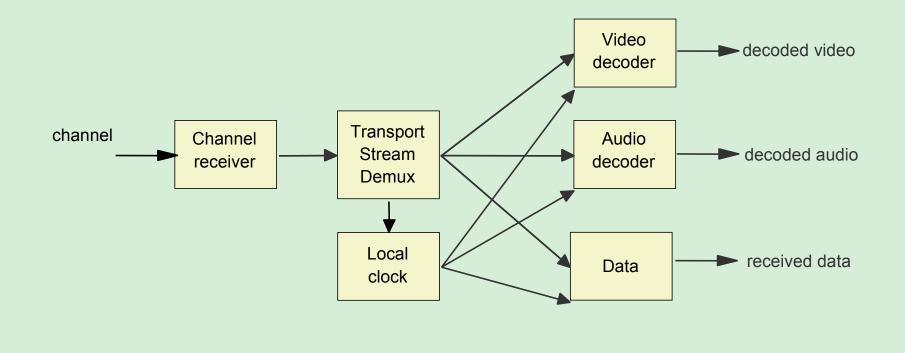

Part 6 - Digital storage media command and control (DSMCC)

Part 7 - Non-backwards compatible audio

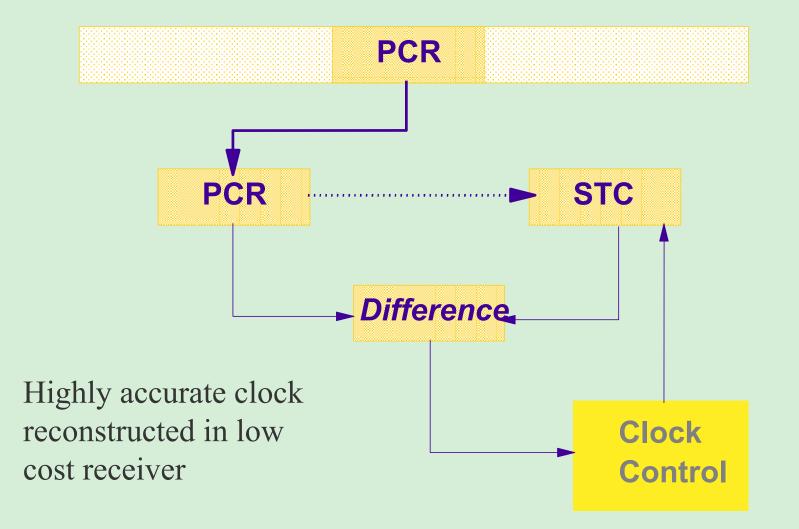
Part 8 - 10 bit video extension

Part 9 - Real-time interface

## MPEG-2 Systems




MPEG-2 Transport Multiplex


#### **MPEG-2** Systems

#### Fixed sized packets

- 188 bytes
- byte aligned
- composed of header and payload



#### MPEG-2 Clock Recovery



## DTV Standard types

**Video Coding** Audio Coding **Transport Broadcast** Data Broadcast **Interactivity Software Environment** 

#### Required for DTV

#### Additional for ITV

## ATSC Groups Looking at Data

ATSC T3-S13

- Data Broadcasting
- ATSC T3-S16
  - Interactive Services
- ATSC T3-S17
  - DTV Applications Software Environment
- ATSC IS-DIWG (I and II)
  - Data Implementation Working Group

### Data Touches Everything!

All types of equipment are affected

- Authoring/editing platforms
- File servers
- Tape machines
- MPEG-2 encoders/decoders/multiplexors
- Receivers

# ATSC T3S13 MANDATE

Define how data <u>associated</u> with a television program is carried, scheduled and announced.

Define how data <u>not associated</u> with a program is carried, scheduled and announced.

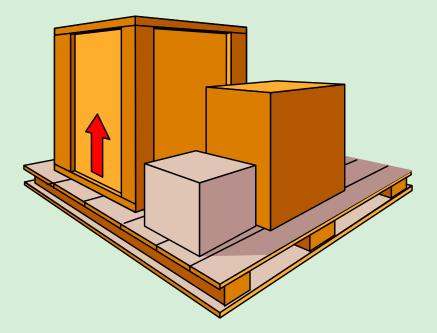
**Build a foundation for new services (e.g. interactive services).** 

**Define transport mechanisms to support a wide variety of data services:** 

Asynchronous/Synchronous/Synchronized data Multiprotocol data Fixed bandwidth data Opportunistic data.

# DTV = VIDEO + AUDIO + DATA

#### **MPEG-2** Transport Streams carrying multiplexed:


- Service Information (ATSC PSIP + MPEG-2 SI)
- Audio, video and *data elementary streams*

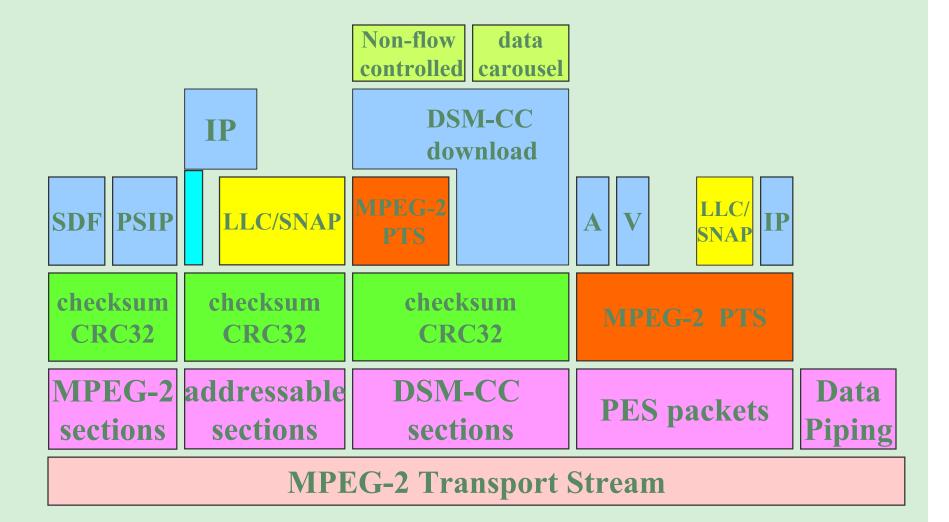


### ATSC T3S13 BENEFITS

- •Richer presentation model for advertisers/content producers Media object delivery (HTML, JAVA applets, Rich Graphics)
- New incremental capabilities based on data
- Support for widespread existing data protocols
- •Basic data services File download Integration with Web content

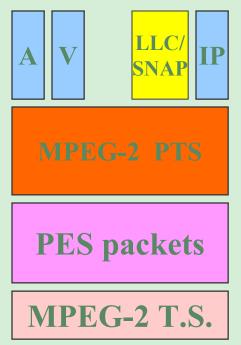
# Encapsulations




#### Data Taxonomy

Protocol encapsulation

- Standard
- Proprietary
- > Data types
  - Asynchronous vs. synchronous vs. synchronized
  - Streaming vs. non-streaming
  - Blobs, IP, Other wrappers

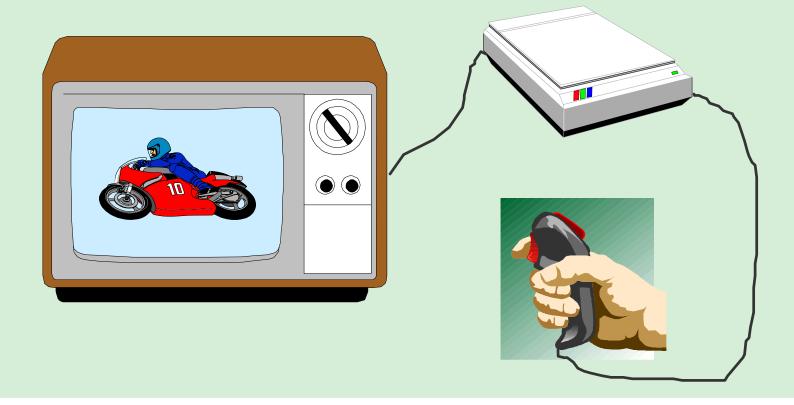

#### LAYERS AND PROTOCOLS

# PACKETIZATION, SYNCHRONIZATION, PROTECTION LAYERS



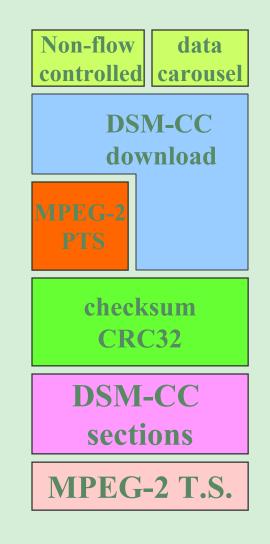
#### PES Packets

- Carry A/V data
- Carry data synchronized with A/V
- Carries data synchronized with other PES streams
- Carries synchronous data




### PES PACKETS

- Synchronous data streaming harmonized with SCTE DVS132
- Synchronized data streaming
- Each type has a defined header
- Headers are not the same for Synchronous and Synchronized data elementary streams


#### EXAMPLE OF SYNCHRONOUS DATA SERVICES

- Video Games based on 2D/3D graphics and image rendering
- Infomercial based on animated computer graphics



#### **DSM-CC SECTIONS**

- Carousel scenario = periodic re-transmission of data module (for increased accessibility)
- Non-flow controlled scenario = one time download of a data module
- Two layer download protocol to allow logical grouping of modules as well as large number of data objects
- The synchronized download protocol offers capability to transmit <u>non-streaming, error-</u><u>protected</u>, synchronized data

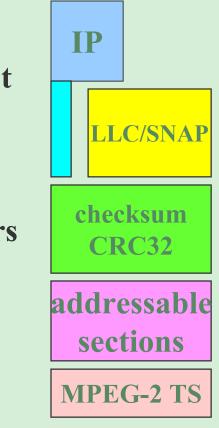


# EXAMPLES OF ASYNCHRONOUS DATA SERVICES

- Stock tickers
- sports statistics
- weather reports
- music downloads,...



#### EXAMPLES OF NON-STREAMING SYNCHRONIZED SERVICES

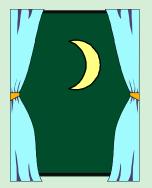

Just-in-Time transmission of data synchronized with video and/or audio

- Pop-up videos
- Hot-spots, URL links in commercials and documentaries
- Evening games
- Triggers



#### ADDRESSABLE SECTIONS

- For tunneling of Internet Protocol
- Include a 6-byte MAC address
- Default mapping is 28-bit IP multicast address to 23-bit Ethernet MAC multicast address
- Agree with Amendment 1 to DSM-CC
- checksum protection only for backward compatibility with MPEG section parsers




# EXAMPLES OF ADDRESSABLE SECTION

#### -BASED SERVICES

#### **Personalized services:**

- Download of software at night
- Subscription to newspaper service <u>Scalable services:</u>
- platform-dependent downloads



#### Proprietary

•Data Piping

•No guarantee of interoperability

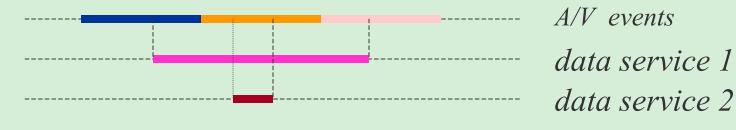


# Discovery & Binding



#### •ANNOUNCEMENT : PSIP + DET

#### • DISCOVERY • BINDING } SDF


# ANNOUNCEMENT (SCHEDULE)

title

Data Services associated with an A/V event: value of service\_type is 0x02 or 0x03 Use either

> PSIP EIT(s) for a data services sharing same schedule and same title as A/V event OR

> DET(s) for a data service having a separate schedule or



Data Services NOT associated with an A/V event: value of service\_type is 0x04 Use DET(s)

# ANNOUNCEMENT (SCHEDULE)

In the descriptor loop of every A/V/D or D event: A Data Broadcast Descriptor is present. service\_profile service\_level

Fields may be used by data receiver to determine whether it can proceed with acquisition of data service or not

#### A PID Count Descriptor is optionally present: total # of PIDs minimum # of PIDs

Fields may be used by data receiver to determine whether it can acquire full or "minimal" data service

# ANNOUNCEMENT (SCHEDULE)



Only one data service per virtual channel

Possibly <u>multiple</u> data services in a single MPEG-2 Transport Stream (in this case SDF must be on distinct PIDs)

### DISCOVERY AND BINDING: SERVICE DESCRIPTION FRAMEWORK

**SDF:** 

**Describes a data service as an aggregation of applications** (discovery)

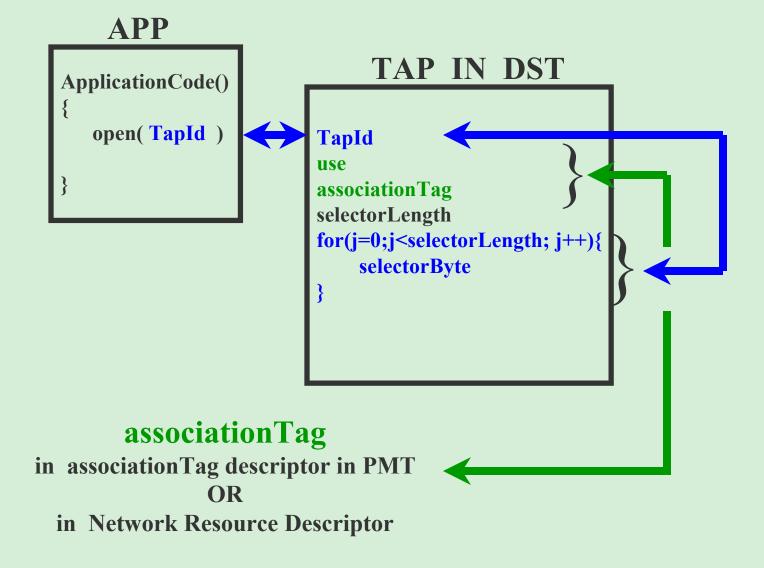
**Provides information for associating an application with broadcast or remote data components (binding)** 

Is designed based on MPEG-2 DSM-CC mechanisms (Association Tag descriptor, Tap structure).

### SERVICE DISCOVERY

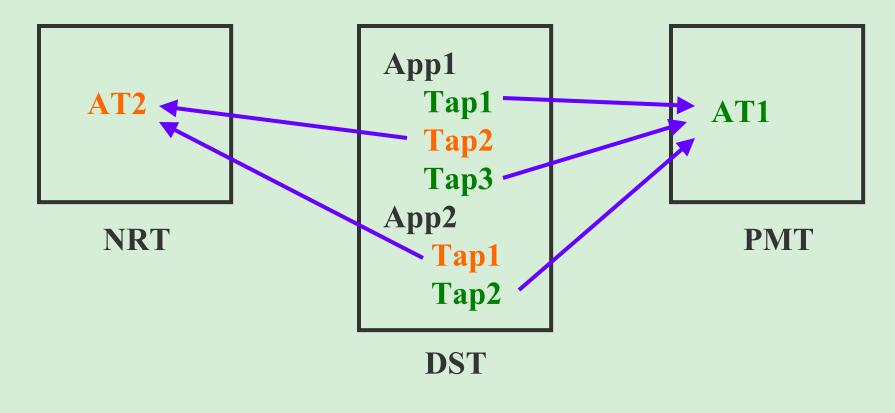
Main element is the <u>Data Service Table</u> identifying the applications making up a data service

The transmission of a Data Service Table is mandatory for any ATSC Data Service


Data Service Table follows MPEG-2 System section format

### DATA SERVICE TABLE

dataServiceTable(){ for (applications count) { compatibility descriptor application identifier for (tapsCount){ protocol\_encapsulation Tap() +} // end tapsCount application parameters descriptors "pointer" application private information } // end applications count to data service private information element }


MPEG-2 packetization, synchronization, protection layers protocol

#### BINDING TO A COMMUNICATION CHANNEL



### SERVICE BINDING

Multiple Taps of one or several applications can reference the same Network Resource !!!



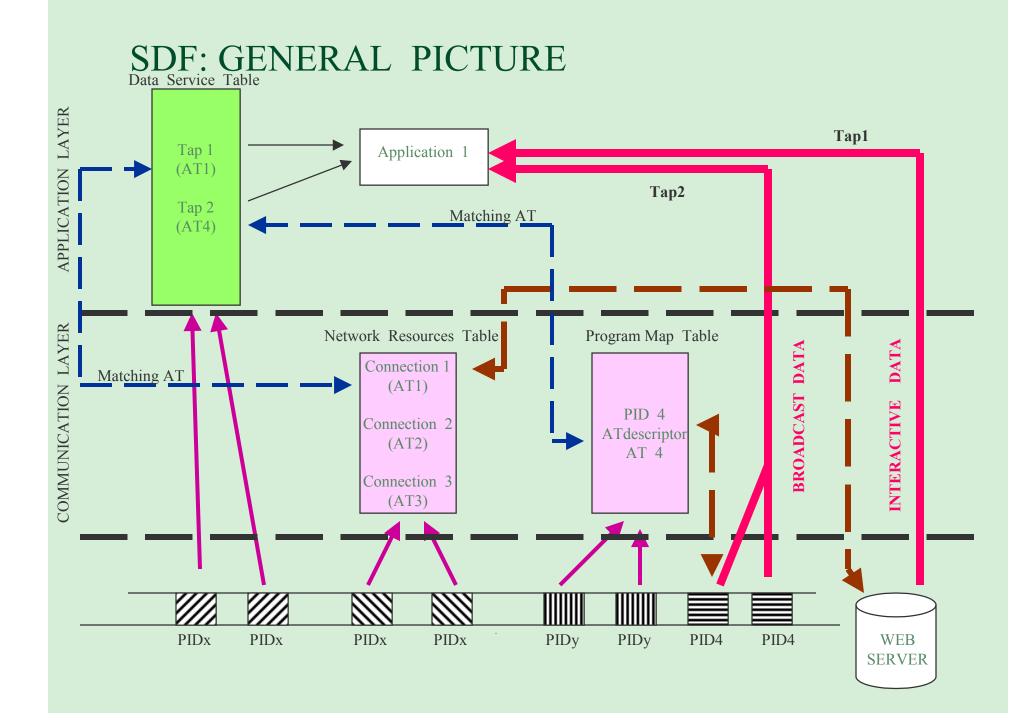
# SERVICE BINDING

Main elements are the <u>Network Resources Table</u> and the Association Tag descriptor(s) in the PMT

The Network Resources Table announces any external communication channels used by a data service.

The transmission of a Network Resources Table is optional for any ATSC Data Service

Network Resources Table follows MPEG-2 section format


# NETWORK RESOURCES TABLE

networkResourceTable(){ compatibility descriptor dsmccResourceDescriptor private information The internet address of a server in an interactive service

**O**R

a remote data elementary stream in another MPEG-2 Transport Stream

includes an association tag



#### SDF ADVANTAGES

- promotes responsible usage of bandwidth
- flexibility to determine how frequently it is transmitted (impact on accessibility)
- designed for broadcast and interactive services
- based on basic MPEG section parsing.
- direct access to association tags so they can be managed easily in emission station
- uses new resource descriptors for broadcast and interactive services (amendment 2 to DSM-CC)

#### TRANSPORT SYSTEM TARGET DATA RECEIVER MODEL

# DATA SERVICE PROFILES

**Purpose is:** 

- To represent maximum bandwidth allocated to a data service.
- Multiple services can be bundled together into the same profile
- A data service may use less than the transmission bandwidth allowed by the profile

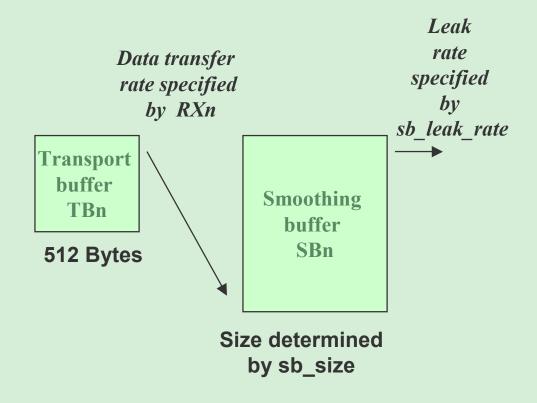
# DATA SERVICE PROFILES

| G1 | Guaranteed bandwidth up to 384 kpbs   |
|----|---------------------------------------|
| G2 | Guaranteed bandwidth up to 3.84 Mbps  |
| G3 | Guaranteed bandwidth up to 19.39 Mbps |
| A1 | <b>Opportunistic up to 19.39 Mbps</b> |

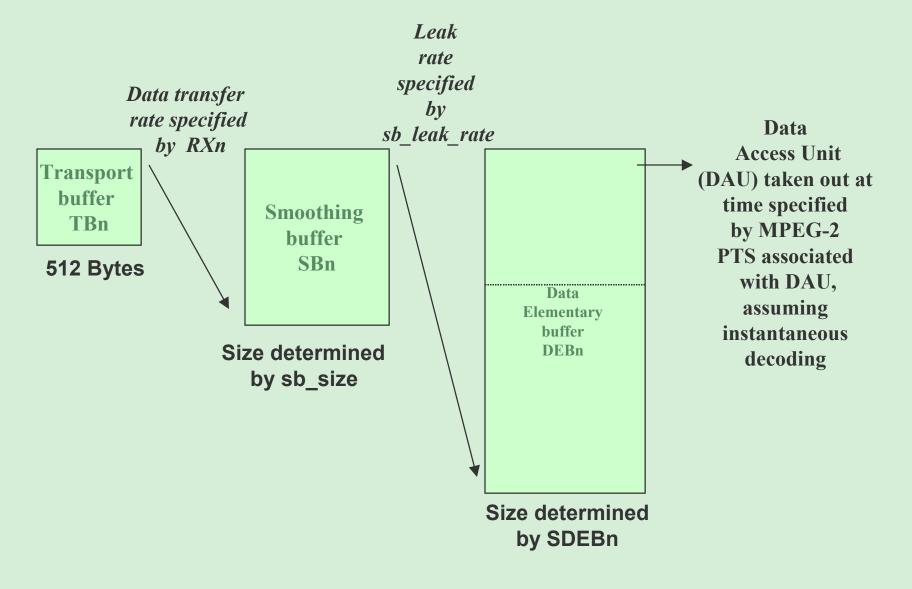
(NTSC VBI-based Data Services: 180 kbits/sec max)

# OPPORTUNISTIC DATA SERVICES

**Opportunistic data service = A data service for which** <u>no transmission bandwidth</u> has been provisioned in the emission station. Data packets are inserted into the multiplex upon request from multiplexer (see IS DIWG)


**Opportunistic data services make use of instantaneous bandwidth available in a transport stream. Profile to be used in connection with VBR video encoders .** 

# T-STD BUFFER MODEL


The T-STD buffer model embodies the *timely and controlled delivery* of data. Its purpose:

- To provide multiplexers with tool to implement synchronization of data with video or audio in a reliable manner.
- To define bounds on size of data to be acquired by data receivers
- To define bounds on throughput required in data receivers.

### T-STD BUFFER MODEL FOR ASYNCHRONOUS SERVICES



#### T-STD FOR SYNCHRONIZED SERVICES



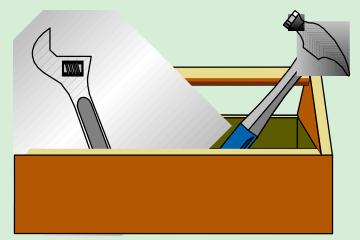
# DATA SERVICE LEVELS

Purpose to provide reference points for memory and throughput requirements in data receivers

DEBn buffer is split uniformly among all data elementary streams so applications of a same service can be run concurrently in a data receiver

Nominal Data Access Unit (DAU) size is 40040 bytes = 19.2 Mbits/sec \* 1001 / (8 \* 60 \* 1000)

DAUs must at least 5.561111 msec apart (172.8 Mbits/sec throughput for level 1 services )


# DATA SERVICE LEVELS

| 1  | DEBSn = 120120 bytes         |
|----|------------------------------|
| 4  | DEBSn = 480480 bytes         |
| 16 | DEBSn = 1921920 bytes        |
| 64 | <b>DEBSn</b> = 7687680 bytes |

# Implementation







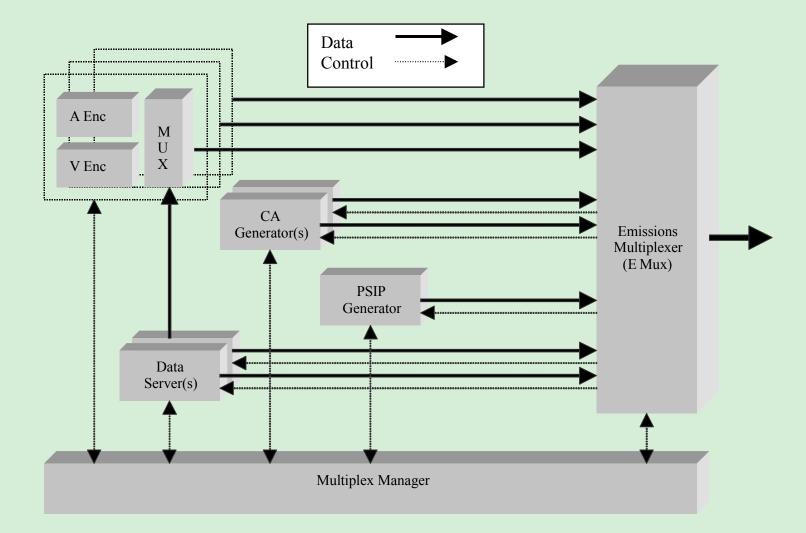
## Implementation

#### Standards provide firm basis for system

- BUT, may(shall?/do?) not work exactly as written
- Real world implementation
  - Interoperability
  - Physical realities

Thus: Recommended Practices needed

### IS-DIWG I


Implementation of data broadcast in an ATSC emission station

- Recommendations
- Interoperability
- How to make it work
- Focus tightly scoped to emission station
- ► IS "findings" document (IS-151) posted on ATSC web site

# Scope

- Data Broadcast for ATSC emission station
- Connection of data source(s) to emission multiplex
  - Physical
  - Protocol(s)
  - Control
  - Synchronization
- Broadened scope for
  - Sources that "look, act & feel" like data
  - Beyond emission station for synchronization

#### Environment



#### IS-DIWG I

Opportunistic data connection between data server and emissions multiplexer

• SMPTE 325M, RP203, RP206

#### End-end synchronized data requirements

- MPEG-2 domain time stamping
- Baseband domain time stamping
- Authoring, storage, transport requirements

# Synchronization

- Synchronizing data with other streams is desirable
- While MPEG-2 systems provides the tools for synchronized data, the general implementation problem is not solved.
- Core problem: Data is unbounded in complexity, Receivers are unbounded in stupidity

# Synchronization Types

Loose - within a few seconds

- Scheduling / Traffic System
- Tight frame/field accurate presentation
  - Requires special considerations

Synch to A/V or other data stream

• Need common MPEG timebase

### Examples of Tight Synch

- "Buy Me" Icons that appear exactly at the 1st frame of an ad
- Moving hotspots that follow characters around the screen

# Issues in Tight Synchronization

- Standardized Encapsulations
- Workable Implementation Guidelines
- Buffer Management
- Bandwidth Management
- Authoring Tools

### General Solution

- Need common set of recommended practices (interoperability)
- Need authoring tools that are synchronized data aware
- Need data awareness through entire food chain
- Need agreement amongst players to do it right

#### IS-DIWG II (...the revenge!)

#### Solve problems discovered in DIWG-I

- End-end data walk-through exercises
- Authoring parameters
- Transport of synchronized A/V/D in studio
- Conversion of synchronized A/V/D between baseband, MPEG-2, and back again
- Discovery of data services at receiver

### IS-DIWG II

#### Wider scope

- Complete data essence food-chain
- Authoring/production through distribution through emission
- Must look at entire picture to solve the problem

#### Plenty of Work to Do!

Work spaces overlap ATSC and SMPTE
Ideal to minimize redundant efforts
Cooperation has worked well in the past

DIWG-I opportunistic data flow control

Identify groups in ATSC, SMPTE that have specific expertise in areas that involve data broadcasting

# CONCLUSION

- ATSC Data Broadcast Service specification is the result of more than 3 years of successful collaboration between CE, PC and head-end equipment manufacturers.
- It has been recorded as DVS 161 by SCTE
- The specification opens up new business opportunities (opportunistic data, data service devices, IEEE 1394, personalization,...)
- The specification will help accelerate deployment of DTV services.